Picture of Charles Richardson

Charles Clifton Richardson, M.D.

Edward S. Wood Professor of Biological Chemistry and Molecular Pharmacology, Emeritus

Fig. 1Fig. 1A major goal is to define, in molecular terms, the mechanism by which a chromosome is replicated. The replication of the chromosome of bacteriophage T7 has been used as a model system.  T7 has evolved an efficient and economical system for DNA replication.  The cartoon depicts the T7 replisome and illustrates the major molecular motors and contacts. On the leading strand, T7 DNA polymerase (gp5) undergoes multiple conformational changes as it moves from one template position to another and senses the correct fit of an incoming deoxyribonucleoside triphosphate.  E. coli thioredoxin (trxbinds tightly to the thumb subdomain of gp5 and increases its processivity 100-fold.  The interaction with gp5 also creates docking sites for the other T7 replication proteins.  Unwinding of the DNA to create a ssDNA template for gp5/trx is accomplished by the helicase located in the C-terminal half of T7 gene 4 protein (gp4). Gp4 assembles as a hexamer on the lagging strand and uses the energy of hydrolysis of dTTP to translocate 5’ – 3’ on ssDNA; it unwinds duplex DNA that it encounters. The assembly of the hexamer creates six NTP-binding sites at the interface of the subunits; nucleotide hydrolysis results in conformational changes that are conveyed to the central core through which the DNA passes.

In order for the lagging strand to be replicated it is necessary to periodically synthesize an RNA primer.  Primer synthesis is catalyzed by the primase located in the N-terminal half of gp4. The tetraribonucleotides, synthesized at specific DNA sequences, are extended by a lagging strand polymerase to generate Okazaki fragments several thousand nucleotides in length.  The lagging strand folds back on itself such that the lagging strand DNA polymerase can interact with the helicase.  This association of the two polymerases enables both strands to be synthesized in the same overall direction and synthesis of both strands now proceeds at identical rates. The folding of the lagging strand creates a replication loop of lagging strand DNA that contains the nascent Okazaki fragment. These loops, visualized by electron microscopy or real time single molecule techniques, form, grow, and resolve, to generate Okazaki fragments of uniform lengths of around 1000 nucleotides.  Upon initiation of primer synthesis the helicase halts movement. This brake mechanism is dependent on the interaction of the primase with the helicase.

Although proteins in the T7 replisome are relatively few, there are a large number of interactions that provide for the molecular motors and switches. All of the individual proteins have been crystallized and their crystal structures determined. In addition, a snapshot of an actively synthesizing polymerase is available in the crystal structure of gp5/trx in complex with a primer-template and a dNTP. The structure of the full length hexameric gp4 and those of the helicase and primase domains provide insight into the communication between the domains as well as the mechanism of translocation of the helicase on DNA.

In addition to these studies on the replisome studies are designed to understand the acquisition of host functions by T7.  T7 derives the nucleotide precursors for DNA synthesis from the breakdown of the host DNA.  T7 gene 1.7 protein is a nucleotide kinase that converts dTMP and dGMP to dTDP and dGDP that are then converted to the dNTP by host kinases.  E. coli adenylate kinase and dCMP kinase account for the formation of dADP and dCDP.  T7 gene 1.2 protein inhibits an E. coli  dGTPase that hydrolyzes dGTP to dG and tripolyphosphate.  Gene 2 protein binds to the Beta subunit if E. coli RNA polymerase and inhibits its activity, a prerequisite for packaging of the DNA.

Address: 

Room C2-219

240 Longwood Avenue

Boston, MA 02115

Publications View
DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase.
Authors: Authors: Crampton DJ, Mukherjee S, Richardson CC.
Mol Cell
View full abstract on Pubmed
Long-term effects of pioglitazone and metformin on insulin sensitivity in patients with Type 2 diabetes mellitus.
Authors: Authors: Roden M, Laakso M, Johns D, Widel M, Urquhart R, Richardson C, Mariz S, Tan MH.
Diabet Med
View full abstract on Pubmed
Acidic residues in the nucleotide-binding site of the bacteriophage T7 DNA primase.
Authors: Authors: Lee SJ, Richardson CC.
J Biol Chem
View full abstract on Pubmed
A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor.
Authors: Authors: Hamdan SM, Marintcheva B, Cook T, Lee SJ, Tabor S, Richardson CC.
Proc Natl Acad Sci U S A
View full abstract on Pubmed
The highly processive DNA polymerase of bacteriophage T5. Role of the unique N and C termini.
Authors: Authors: Andraos N, Tabor S, Richardson CC.
J Biol Chem
View full abstract on Pubmed
Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis.
Authors: Authors: Dutta S, Li Y, Johnson D, Dzantiev L, Richardson CC, Romano LJ, Ellenberger T.
Proc Natl Acad Sci U S A
View full abstract on Pubmed
A unique region in bacteriophage t7 DNA polymerase important for exonucleolytic hydrolysis of DNA.
Authors: Authors: Kumar JK, Chiu ET, Tabor S, Richardson CC.
J Biol Chem
View full abstract on Pubmed
40th EASD Annual Meeting of the European Association for the Study of Diabetes : Munich, Germany, 5-9 September 2004.
Authors: Authors: Veitenhansl M, Stegner K, Hierl FX, Dieterle C, Feldmeier H, Gutt B, Landgraf R, Garrow AP, Vileikyte L, Findlow A, Waterman C, Boulton AJ, Shankhdhar K, Shankhdhar L, Shankhdhar U, Petrova NL, Foster AV, Edmonds ME, Ferraresi R, Caravaggi C, De Giglio R, Cavaiani P, Pogliaghi I, Sommariva E, Katz IA, Harlan A, Miranda-Palma B, Prieto-Sanchez L, Armstrong DG, Bowker JH, Mizel MS, Cernea S, Wohlgelernter J, Kidron M, Modi P, Raz I, Arbit E, Nosek L, Kapitza C, Beckett P, Gelfand R, Goldberg M, Heise T, Testa MA, Turner RR, Hayes JF, Scranton RE, Simonson DC, Yang YW, Hsu YJ, Naujok O, Francini F, Jörns A, Tiedge M, Lenzen S, Abdel-Wahab YH, Marenah L, Orr DF, Shaw C, Flatt PR, Chokkalingam K, Mansell PI, Clausen P, Ekbom P, Damm P, Feldt-Rasmussen U, Nielsen B, Mathiesen ER, Feldt-Rasmussen B, Dewan S, Da Silva N, Ternan PM, Leong KS, Wilding JP, Asatiani N, Kurashvili R, Dundua M, Shelestova E, Pagava K, Ramazashvili M, Hod M, Smirnov S, Petersen JL, Justesen TI, Ringholm Nielsen L, Müller C, Højlund K, Wensaas A, Kase ET, Aas V, Rustan AC, Thoresen GH, Levin K, Beck-Nielsen H, Gaster M, Im SS, Kang SY, Kim SY, Ahn YH, Lihn AS, Schmoll D, Werner T, Kienitz A, Meyer M, Barthel A, Ailett F, Sutherland C, Walther R, Grempler R, Sasson S, Reich R, Tenenbaum T, Alpert E, Anfossi G, Russo I, Traversa M, Massucco P, Mattiello L, Doronzo G, Trovati M, Lally S, Tan CY, Owens D, Tomkin GH, Porchay I, Péan F, Bellili N, Betoulle D, Balkau B, Tichet J, Marre M, Fumeron F, Chatellier G, Alhenc-Gelas F, Nichols GA, Brown JB, Hayes RP, Bowman L, Drexel H, Saely CH, Marte T, Benzer W, Langer P, Hoefle G, Moll W, Aczel S, Karagiannis E, Lübben G, Urquhart R, Edwards G, Bruce S, Howlett HS, Cugnardey N, Turner KC, Park JS, Fiedorek FT, Avogaro A, Gallo A, Pinton P, Rizzuto R, Murphy E, Ceolotto G, Caterson I, Guy-Grand B, Hill J, Barone M, Aiello A, Allochis G, Borzì V, Cannatà F, Caronna S, D'Avanzo A, Elli R, Formoso G, Paroli A, Scardapane R, Sorichetti P, Tatti P, Viviani G, Santeusanio F, Manzella D, Grella R, Abbatecola AM, Paolisso G, Søndergaard LG, Monster TB, Johnsen SP, Olsen ML, McLaughlin JK, Sørensen HT, Lervang HH, Rungby J, Lyssenko V, Fredriksson J, Almgren P, Anevski D, Orho-Melander M, Sjögren M, Tuomi T, Groop L, Jaziri R, Aubert R, Tuomilehto J, Hu G, Jousilahti P, Peltonen M, Lindstrom J, Laina A, Alevizaki M, Philippou G, Souvatzoglou A, Anastasiou E, Alba S, Metcalf BS, Voss LD, Jeffery AN, Wilkin TJ, Glüimer C, Colagiuri S, Vistisen D, Borch-Johnsen K, Haynes A, Bower C, Bulsara MK, Jones TW, Davis EA, Mortensen HB, Hougaard P, Holl R, Swift P, Pociot F, Knip M, Hansen L, Szadkowska A, Pietrzak I, Zmyslowska A, Wyka K, Bodalski J, Holl RW, Swift R, Hougaard R, Gerstl EM, Engelsberger I, Rabl W, Rosenbauer J, Gröbe H, Hofer SE, Krause U, Dabelea D, Morgan T, Pettitt DJ, Dolan L, Mayer-Davis EJ, Pihoker C, Hillier TA, Imperatore G, Ruggiero A, Hamman RE, Stylianou A, Tentolouris N, Perrea D, Tselepis AD, Lourida E, Kitsou E, Katsilambros N, Vedovato M, Dodesini AR, Lepore G, Tiengo A, Trevisan R, Penno G, Miccoli R, Pucci L, Lucchesi D, Bandinelli S, Fotino C, Triscornia S, Baldassari E, Del Prato S, Reboldi P, Santeusanio E, Fuller J, Langham RG, Gow RM, Zhang Y, Kelly DJ, Christensen PK, Parving HH, Gilbert RE, Chibalin AV, Zhong Z, Kotova O, Davidescu A, Ehrén I, Ekberg K, Wahren J, Wassef L, Buckley AJ, Rooney KB, Briody J, Thompson M, Ozanne SE, Thompson CH, Chamson-Reig A, Summers K, Arany EJ, Hill DJ, Solerte SB, Gazzaruso C, Locatelli E, Precerutti S, Schifino N, Ferrari E, Fioravanti M, Phenekos CV, Ginis A, Fragaki I, Chalkiadaki M, Tzioras C, Powell LA, McGuire GM, Jewhurst V, Trimble ER, Rasmussen BM, Vessby B, Uusitupa M, Berglund L, Pedersen E, Riccardi G, Rivellese AA, Tapsell L, Hermansen K, da Silva Xavier G, Rutter J, Rutter GA, Briaud IM, Lingohr MK, Dickson LM, McCuaig JR, Lawrence JC, Rhodes CJ, Wikstrom JD, Katzman SM, Shirihai OS, Yang J, Deng S, Wang X, Hessner MJ, Wu J, Wong RK, et al.
Diabetologia
View full abstract on Pubmed
The linker region between the helicase and primase domains of the gene 4 protein of bacteriophage T7. Role in helicase conformation and activity.
Authors: Authors: Lee SJ, Richardson CC.
J Biol Chem
View full abstract on Pubmed
Effect of single-stranded DNA-binding proteins on the helicase and primase activities of the bacteriophage T7 gene 4 protein.
Authors: Authors: He ZG, Richardson CC.
J Biol Chem
View full abstract on Pubmed